DATA SCIENCE FOR UNDERGRADUATES Opportunities and Options Presentation by Nicholas Horton to the NSF EHR Advisory Committee May 31, 2018 **Study funded by the National Science Foundation** #### Overview As our economy, society, and daily life become increasingly dependent on data, new college graduates entering the workforce need to have the skills to analyze data effectively. This study explores what data science skills are essential for undergraduates now and in the future, and how academic institutions can structure their data science education programs to best meet those needs. - Interim report released in Sept 2017 - Webinars and public input in Fall 2017 - Final report released on May 2, 2018 #### The Committee LAURA HAAS, NAE, University of Massachusetts Amherst, Co-Chair ALFRED O. HERO III, University of Michigan, Co-Chair ANI ADHIKARI, University of California, Berkeley DAVID CULLER, NAE, University of California, Berkeley DAVID DONOHO, NAS, Stanford University E. THOMAS EWING, Virginia Tech LOUIS J. GROSS, University of Tennessee, ANDREW ZIEFFLER, University of Knoxville NICHOLAS J. HORTON, Amherst College JULIA LANE, New York University ANDREW MCCALLUM, University of Massachusetts Amherst RICHARD MCCULLOUGH, Harvard University REBECCA NUGENT, Carnegie Mellon University LEE RAINIE, Pew Research Center ROB RUTENBAR, University of Pittsburgh KRISTIN TOLLE, Microsoft Research TALITHIA WILLIAMS, Harvey Mudd College Minnesota, Minneapolis # National Academies' Groups and Staff #### Groups: Computer Science and Telecommunications Board (CSTB) Board on Mathematical Sciences and Analytics (BMSA) Committee on Applied and Theoretical Statistics (CATS) Board on Science Education (BOSE) #### Staff: MICHELLE K. SCHWALBE, Director, BMSA, Study Director JON EISENBERG, Director, CSTB BEN WENDER, Director, CATS AMY STEPHENS, BOSE, Program Officer LINDA CASOLA, BMSA, Associate Program Officer and Editor RENEE HAWKINS, CSTB, Financial Manager JANKI PATEL, CSTB, Senior Program Assistant ### **Interim Report** - 1. Introduction - 2. Acquiring data science skills and knowledge - Foundational skills - Translational skills - Ethical skills - Professional skills - 3. Data science education in the future - Innovative curriculum development - Suggestions for institutions - 4. Broad participation in data science - Recruitment and retention strategies - Institutional partnerships - K-12 objectives - Public outreach - Evaluation and assessment - 5. Reflections - Hippocratic Oath - Summary of findings and open questions #### ENVISIONING THE DATA SCIENCE DISCIPLINE: THE UNDERGRADUATE PERSPECTIVE Interim Report Committee on Envisioning the Data Science Discipline: The Undergraduate Perspective Computer Science and Telecommunications Board Board on Mathematical Sciences and Analytics Committee on Applied and Theoretical Statistics Division on Engineering and Physical Sciences Board on Science Education Division of Behavioral and Social Sciences and Education A Consensus Study Report of The National Academies of SCIENCES • ENGINEERING • MEDICINE > THE NATIONAL ACADEMIES PRESS Washington, DC www.nap.edu National Academies of Sciences, Engineering, and Medicine. 2018. Envisioning the Data Science Discipline: The Undergraduate Perspective: Interim Report. Washington, DC: The National Academies Press. https://doi.org/10.17226/24886. # Envisioning the DATA SCIENCE DISCIPLINE #### The Undergraduate Perspective Webinar Series (Sept.-Nov. 2017) #### **Building Data Acumen** Nicole Lazar, University of Georgia Mladen Vouk, North Carolina State University ## Incorporating Real-World Applications Cláudio T. Silva, New York University Sears Merritt, Mass Mutual Financial Group ### Faculty Training and Curriculum Development Michael Posner: Villanova University Robert Panoff, Shodor ### Communication Skills and Teamwork Madeleine Claire Elish, Data & Society Adam Hughes, Pew Research ## Inter-Departmental Collaboration and Institutional Organization Mark Embree, Virginia Tech Michael Franklin, University of Chicago #### **Ethics** Sorin Matei, Purdue University Brittany Fiore-Gartland, University of # Envisioning the DATA SCIENCE DISCIPLINE #### The Undergraduate Perspective Webinar Series (Sept.-Nov. 2017) ### Assessment and Evaluation for Data Science Programs Pamela Bishop, University of Tennessee, Knoxville Kari Jordan, Data Carpentry ### Diversity, Inclusion, and Increasing Participation Talithia Williams, Harvey Mudd College Allison Master, University of Washington ## Two-Year Colleges and Institutional Partnerships Brian Kotz, Montgomery College Suzanne Smith, Johnson County Community View webinar recordings and slides at nas.edu/EnvisioningD ### Final Report Contents #### **SUMMARY** 1 INTRODUCTION A Look to the Future Report Overview References 2 KNOWLEDGE FOR DATA SCIENTISTS Data Science Personas of Today and Tomorrow **Data Acumen** A Code of Ethics for Data Science References 3 DATA SCIENCE EDUCATION Undergraduate Modalities Middle and High School Education References 4 STARTING A DATA SCIENCE PROGRAM **Ensuring Broad Participation** Academic Infrastructure Curriculum Faculty Resources **Assessment** References 5 EVOLUTION AND EVALUATION **Evolution** **Evaluation** Roles for Professional Societies References 6 CONCLUSIONS #### **APPENDIXES** A Biographies of the Committee B Meetings and Presentations C Contributing Individuals D Data Science Oath ### **About the Report** - "Envisioning" the future is hard; as motivation we take a utopian point of view - Every student knows some basics of data science (has some modicum of data acumen) - Data science jobs of varying types are ubiquitous: all industries, all geographies - ▶ Data scientists are diverse demographically (all groups are fairly represented) and educationally (from all domains, at all degree levels) - The report will be highly referenced - ► For the descriptions of needed competencies - ▶ For the many examples of programs - For the reference citations - ► The report recognizes in its recommendations that the nature of the field and the educational landscape will continue to evolve rapidly ### Key Insights: Data Science - We are in the infancy of data science - There are and in the future will continue to be many different data science roles - Data science is a unique field that borrows heavily from multiple other fields - ► A major/minor/certificate/etc. should not be the same as, e.g., a degree in statistics or in computer science - ► There will need to be educational opportunities to expose faculty to the breadth of the field - ► There will need to be ways to share educational resources (e.g., course materials, etc.) - ► Coordination among professional societies could usefully support the evolution of the undergraduate data science experience (as well as the evolution of the field) # Key Insights: Undergraduate Data Science - Education at all levels will need to evolve as the field evolves - ► There must be multiple pathways for undergraduates as a result - ► The undergraduate experience should cater to and promote diversity demographic and intellectual in the students it serves - ► There are some core competencies that all data science students (and, ideally, all undergraduates) should have - ► They should develop data acumen - Ethical problem-solving is a key component of data acumen - Evaluation of programs is critical - ► To ensure they evolve as data science evolves - ➤ To ensure they meet the needs of the various roles students will take in the workplace. # The Findings and Recommendations ## Chapter 2: Knowledge for Data Scientists **Finding 2.1** Data scientists today draw largely from extensions of the "analyst" of years past trained in traditional disciplines. As data science becomes an integral part of many industries and enriches research and development, there will be an increased demand for more holistic and more nuanced data science roles. **Finding 2.2** Data science programs that strive to meet the needs of their students will likely evolve to emphasize certain skills and capabilities. This will result in programs that prepare different types of data scientists. **Recommendation 2.1** Academic institutions should embrace data science as a vital new field that requires specifically tailored instruction delivered through majors and minors in data science as well as the development of a cadre of faculty equipped to teach in this new field. **Recommendation 2.2** Academic institutions should provide and evolve a range of educational pathways to prepare students for an array of data science roles in the workplace. ### **A Central Finding** **Finding 2.3** A critical task in the education of future data scientists is to instill data acumen. This requires exposure to key concepts in data science, real-world data and problems that can reinforce the limitations of tools, and ethical considerations that permeate many applications. Key concepts involved in developing data acumen include the following: - Mathematical foundations - Computational foundations - Statistical foundations - Data management and curation - ▶ Data description and visualization - ▶ Data modeling and assessment - Workflow and reproducibility - ▶ Communication and teamwork - ▶ Domain-specific considerations - Ethical problem solving. # And Three More Recommendations **Recommendation 2.3** To prepare their graduates for this new data-driven era, academic institutions should encourage the development of a basic understanding of data science in all undergraduates. **Recommendation 2.4** Ethics is a topic that, given the nature of data science, students should learn and practice throughout their education. Academic institutions should ensure that ethics is woven into the data science curriculum from the beginning and throughout. **Recommendation 2.5** The data science community should adopt a code of ethics; such a code should be affirmed by members of professional societies, included in professional development programs and curricula, and conveyed through educational programs. The code should be reevaluated often in light of new developments. ## Chapter 3: Data Science Education **Finding 3.1** Undergraduate education in data science can be experienced in many forms. These include the following: - Integrated introductory courses that can satisfy a general education requirement - ► A major in data science, including advanced skills as primary field of study - ▶ A minor or track in data science, where intermediate skills are connected to major field of study - ➤ Two-year degrees and certificates - Other certificates, often requiring fewer courses than a major but more than a minor - Massive open online courses, which can engage large numbers of students at a variety of levels - ► Summer programs and boot camps, which can serve to supplement academic or on-the-job training. **Recommendation 3.1** Four-year and two-year institutions should establish a forum for dialogue across institutions on all aspects of data science education, training, and workforce development. # Chapter 4: Starting a Data Science Program - **Finding 4.1** The nature of data science is such that it offers multiple pathways for students of different backgrounds to engage at levels ranging from basic to expert. - **Finding 4.2** Data science would particularly benefit from broad participation by underrepresented minorities because of the many applications to problems of interest to diverse populations. - **Recommendation 4.1** As data science programs develop, they should focus on attracting students with varied backgrounds and degrees of preparation and preparing them for success in a variety of careers. - **Finding 4.3** Institutional flexibility will involve the development of curricula that take advantage of current course availability and will potentially be constrained by the availability of teaching expertise. Whatever organizational or infrastructure model is adopted, incentives are needed to encourage faculty participation and to overcome barriers. - **Finding 4.4** The economics of developing programs has recently changed with the shift to cloud-based approaches and platforms. #### **Chapter 5: Evolution** **Finding 5.1** The evolution of data science programs at a particular institution will depend on the particular institution's pedagogical style and the students' backgrounds and goals, as well as the requirements of the job market and graduate schools. **Recommendation 5.1** Because these are early days for undergraduate data science education, academic institutions should be prepared to evolve programs over time. They should create and maintain the flexibility and incentives to facilitate the sharing of courses, materials, and faculty among departments and programs. **Finding 5.2** There is a need for broadening the perspective of faculty who are trained in particular areas of data science to be knowledgeable of the breadth of approaches to data science so that they can more effectively educate students at all levels. #### **Chapter 5: Evolution** **Recommendation 5.2** During the development of data science programs, institutions should provide support so that the faculty can become more cognizant of the varied aspects of data science through discussion, co-teaching, sharing of materials, short courses, and other forms of training. **Finding 5.3** The data science community would benefit from the creation of websites and journals that document and make available best practices, curricula, education research findings, and other materials related to undergraduate data science education. ### **Chapter 5: Evaluation** **Finding 5.4** The evolution of undergraduate education in data science can be driven by data science. Exploiting administrative records, in conjunction with other data sources such as economic information and survey data, can enable effective transformation of programs to better serve their students. Finding 5.5 Data science methods applied both to individual programs and comparatively across programs can be used for both evaluation and evolution of data science program components. It is essential that both processes are sustained as new pathways emerge at institutions. **Recommendation 5.3** Academic institutions should ensure that programs are continuously evaluated and should work together to develop professional approaches to evaluation. This should include developing and sharing measurement and evaluation frameworks, data sets, and a culture of evolution guided by high-quality evaluation. Efforts should be made to establish relationships with sector-specific professional societies to help align education evaluation with market impacts. # Chapter 5: Professional Societies **Finding 5.6** As professional societies adapt to data science, improved coordination could offer new opportunities for additional collaboration and cross-pollination. A group or conference with bridging capabilities would be helpful. Professional societies may find it useful to collaborate to offer such training and networking opportunities to their joint communities. **Recommendation 5.4** Existing professional societies should coordinate to enable regular convening sessions among their members. Peer review and discussion are essential to share ideas, best practices, and data. DATA SCIENCE FOR UNDERGRADUATES **Opportunities and Options** NSF EHR Advisory Committee May 31, 2018 **Study funded by the National Science Foundation** #### **Questions?** Thanks to the National Science Foundation (CISE, MPS/DMS, EHR, and SBE) for support of this study.